skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McNicol, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high‐frequency, ecosystem‐scale CO2and CH4flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT‐Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2and CH4emissions. Using a model‐data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4module also explained the majority of variance in CH4emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT‐Tidal‐CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4emissions, and (d) CH4responses to non‐periodic changes in salinity. 
    more » « less
  2. Abstract The northeast Pacific Coastal Temperate Rainforest (NPCTR) extending from southeast Alaska to northern California is characterized by high precipitation and large stores of recently fixed biological carbon. We show that 3.5 Tg‐C yr−1as dissolved organic carbon (DOC) is exported from the NPCTR drainage basin to the coastal ocean. More than 56% of this riverine DOC flux originates from thousands of small (mean = 118 km2), coastal watersheds comprising 22% of the NPCTR drainage basin. The average DOC yield from NPCTR coastal watersheds (6.20 g‐C m−2 yr−1) exceeds that from Earth's tropical regions by roughly a factor of three. The highest yields occur in small, coastal watersheds in the central NPCTR due to the balance of moderate temperature, high precipitation, and high soil organic carbon stocks. These findings indicate DOC export from NPCTR watersheds may play an important role in regional‐scale heterotrophy within near‐shore marine ecosystems in the northeast Pacific. 
    more » « less